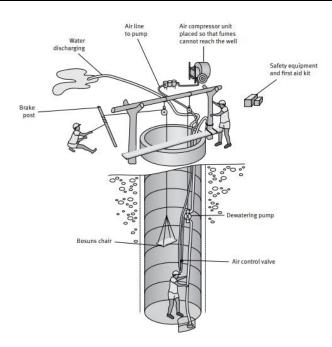

Water Technologies Information Pack

Boreholes:

When water sources are unreliable, groundwater is the most reliable source of water. In areas with very hard rock or very deep groundwater digging boreholes can be a good solution. Hydraulic pumps and rock drills dig to depths of 100m or more to access deep underground water sources. Once installed water is pumped to the surface either by hand or, where there is a high demand, using electric engines. The water is usually stored in tanks before being piped to taps in the village.

Environment	Can be located in hard rock areas and dry and wet areas.	
needed:	They can survive flooding without contamination.	
Supply/Population:	Can supply larger populations	
Climate needed:	Can be installed in dry areas	
	Needs extensive surveys by experts on geology and	
Technical Abilities:	groundwater and experts needed for installation and	
	maintenance.	
Cost:	High	
Materials:	Complex technology is needed to be installed and	
waterias.	maintained	
Water requirements:	needs a groundwater supply	

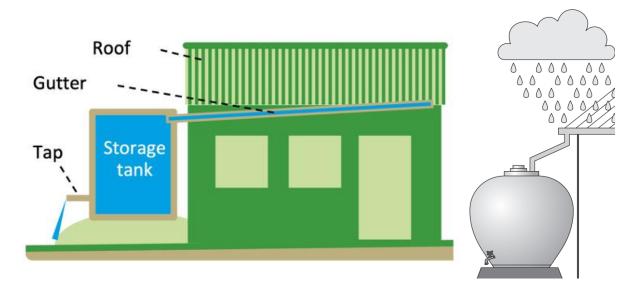


Advantages of borehole	Disadvantages of boreholes
\checkmark Can supply a larger number of people	X Can be costly to install
\checkmark Can reach deep depths of groundwater	X Requires lots of technical knowledge
✓ Generally good yields	X Requires skilled maintenance work
✓ Can help in hard rock areas	X Installation is complex

Hand-dug wells:

A traditional method used for getting to ground water where by a well is dug by hand to access ground water. As they are dug by hand this kind of well is restricted to areas with suitable types of ground (soft grounds: soils, clay and sand). This can be done with to reach groundwater up to 30m deep and can be dug under supervision by the villagers themselves. Wells are roughly 1.5m in diameter.

	Needs soft ground for it to be dug by hand. Useful in both
Environment	dry and wet areas as long as there is groundwater available
needed:	less than 20m from surface. At risk of contamination from
	flooding when there is no lid on well.
Supply/Population:	Can serve 300 people
Climate needed:	Can be installed in dry areas
Technical Abilities:	Can be created by any person with some technical
Technical Admities:	supervision
Cost:	Low
	Simple technology is needed to install the well with locally
Materials:	available materials and can be fitted with either a hand
	pump or an access hole.
Water requirements:	needs a groundwater supply

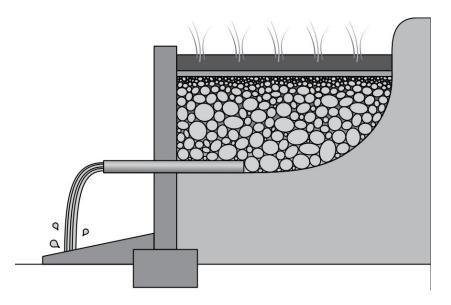


Advantages of hand-dug wells	Disadvantages of hand-dug wells
\checkmark Cheap materials can be used	X Can be time-consuming to construct
\checkmark Can be built by communities	X Risk of collapse if not supported
themselves	properly
✓ Generally good yields	X Depth of well is limited
\checkmark Uses simple materials so is easy to	X Unless capped or protected, hand-dug
maintain	wells can be open to contamination

Rainwater harvesting:

Where there is no surface water, groundwater is too deep or inaccessible due to hard ground conditions, or where it is too salty, acidic or otherwise unfit to drink, rainwater harvesting is a good alternative. In addition, areas with regular rainfall have this is the most appropriate alternative.

Environment needed:	Useful regardless of geology. Needs soft ground for it to be dug by hand. Useful in both dry and wet areas as long as there is groundwater available less than 20m from surface. At risk of contamination from flooding when there is no lid on well.	
Supply/Population:	Depends on storage facilities could supply a school, hospital or singular home	
Climate needed:	Requires two wet seasons a year	
Technical Abilities:	Low skills required; A supervision check recommended to ensure a suitable standard.	
Cost:	Low	
Materials:	Simple technology is needed to build a storage tank, good roofing and guttering for catchment.	
Water requirements:	needs rainfall	

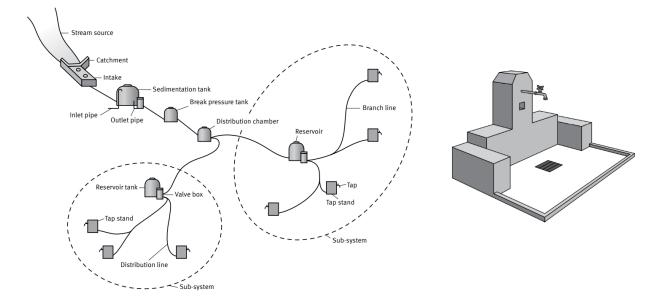


Advantages of rainwater harvesting	Disadvantages of rainwater harvesting
\checkmark Cheap materials can be used for	X Supplies can be contaminated if
building and storage	catchment surfaces aren't cleaned
✓ Construction is relatively	X Poorly constructed water storage can
straightforward	suffer from algal growth and pests
✓ Provides safe water close to buildings	X Not effective all year in arid areas
✓ Low maintenance costs and	X Can act as a breeding ground for
requirements	disease if not properly maintained

Spring protection schemes:

Surface springs occur where groundwater emerges at the surface. A spring source can be used pipe water to a community or to provide a single outlet, running continuously, which is set at a sufficient height to allow a bucket or container to be placed below it. With the latter, to prevent waste, any flow which is not needed for domestic use can be used for irrigation.

Environment	Requires a spring water source close to the surface with soft
needed:	rock.
Supply/Population:	depending on the flow rate this can supply up to 150
Supply/Fopulation.	people.
Climate needed:	Supply will vary with the seasons but does requires rainy
climate needed.	seasons
Technical Abilities:	Low skills required; supervision check recommended to
reclifical Abilities.	ensure a suitable standard.
Cost:	Low (medium if water is piped to community)
Materials:	simple technologies needed to build and maintain
Water requirements:	needs a spring to use as a source



Advantages of rainwater harvesting	Disadvantages of rainwater harvesting
✓ Water coming naturally to the surface limits need for pumping	X Yield can diminish or dry up during
✓ Low maintenance and running costs	extreme drought periods
\checkmark Can be high yielding source of good	
quality – no need for treatment	X Regular maintenance needed around
✓ fast flowing springs can irrigate crops	the spring head to prevent pollution
as well as supply for domestic use	

Gravity fed-water systems:

Water is found from a spring, stream or river in an upland area that is collected and then, using the force of gravity water is piped downhill through to local communities who access the water by using tap stands within the community. These systems tend to be highly reliable and easily maintained but are expensive to install.

Environment needed:	Requires a spring water source in an upland area not too far from communities. It is desirable for the ground to be easy to dig up, but this isn't essential.
Supply/Population:	150 people per tap stand installed
Climate needed:	Can be installed in any climate with more reliable supplies found in areas with regular rainfall.
Technical Abilities:	High skills required for building although local communities can help in building the network but maintenance can be done with low skills.
Cost:	High (installation) but Low after development (maintenance)
Materials:	building requires simple technologies to build and develop
Water requirements:	needs a spring to use as a source

Advantages of gravity fed schemes	Disadvantages of gravity fed schemes
\checkmark Use of gravity stops the need for	X More expensive construction costs than
expensive pumps	underground water sources
\checkmark Low maintenance and running costs	X Difficult terrain can restrict pipe-laying
✓ Consistent level of service due to low	X Yield can diminish or dry up during
maintenance needs	extreme drought periods
\checkmark Tap stands can be within reasonable	X Build-up of limescale in pipes in hard
distance (250 metres) of all households	water areas